
CMSC 330 - Advanced Programming Languages
Programming Project 2

The second project involves completing and extending the C++ program that

evaluates statements of an expression language contained in the module 3

case study.

The statements of that expression language consist of an arithmetic expression

followed by a list of assignments. Assignments are separated from the

expression and each other by commas. A semicolon terminates the expression.

The arithmetic expressions are fully parenthesized infix expressions

containing integer literals and variables. The valid arithmetic operators are +,

–, *, /. Tokens can be separated by any number of spaces. Variable names

begin with an alphabetic character, followed by any number of alphanumeric

characters. Variable names are case sensitive. This syntax is described by BNF

and regular expressions in the case study.

The program reads in the arithmetic expression and encodes the expression as

a binary tree. After the expression has been read in, the variable assignments

are read in and the variables and their values of the variables are placed into

the symbol table. Finally the expression is evaluated recursively.

Your first task is to complete the program provided by providing the three

missing classes, Minus , Times and Divide .

Next, you should extend the program so that it supports relational, logical

and conditional expression operators as defined by the following extension to

the grammar:

<exp> -> '(' <operand> <op> <operand> ')' |
 '(' <operand> ':' <operand> '?' <operand> ')' |
 '(' <operand> '!' ')'
<op> -> '+' | '-' | '*' | '/' | '>' | '<' | '=' | ' &' | '|'

Note that there are a few differences in the use of these operators compared to

their customary use in the C family of languages. There differences are

• In the conditional expression operator the symbols are reversed and the

third operand represents the condition. The first operand is the value

when true and the second the value when false
• The logical operators use single symbols not double, for example

the and operator is & not &&
• The negation operator ! is a postfix operator, not a prefix one
• There are only three relational operators not the usual six and the

operator for equality is = not ==

Like C and C++, any arithmetic expression can be interpreted as a logical

value, taking 0 as false and anything else as true

Your final task is to make the following two modifications to the program:

• The program should accept input from a file, allowing for multiple

expressions arranged one per line. Some hints for accomplishing this

transformation will be provided in the conference
• All results should be changed from double to int . In particular

the evaluate function should return an int .

You may assume that all input to the program is syntactically correct.

You are to submit the source code for the entire program in a .zip file. Your

program must compile with Microsoft Visual C++.

