
HOMEWORK 6 

 

 

 

 

Homework 6 

 

 

 

 

Yuji Shimojo 

 

 

 

 

CMSC 330 

Instructor: Prof. Reginald Y. Haseltine 

July 21, 2013 

  



HOMEWORK 6 

Question 1 

What is the output of the following C++ program? 

 

#include <iostream> 

#include <string> 

using namespace std; 

 

class Circle 

{ 

public: 

    Circle(double radius) {this->radius = radius; } 

    void put() const {cout << "Radius = " << radius;} 

private: 

    double radius; 

}; 

 

class ColoredCircle: public Circle 

{ 

public: 

    ColoredCircle(double radius, string color); 

    void put() const; 

private: 

    string color; 

}; 

 

ColoredCircle::ColoredCircle(double radius, string color) 



HOMEWORK 6 

    : Circle(radius), color(color) {} 

 

void ColoredCircle::put() const 

{ 

    Circle::put(); 

    cout << " Color = " << color; 

} 

 

int main() 

{ 

    ColoredCircle redCircle(100., "red"); 

    Circle* circle1 = &redCircle; 

    circle1->put(); 

    cout << endl; 

    Circle circle(50.); 

    Circle* circle2 = &circle; 

    circle2->put(); 

    cout << endl; 

    return 0; 

}  

 

Output 

Radius = 100 

Radius = 50 

 

Question 2 



HOMEWORK 6 

Modify the program so that the put function is virtual. What is the output after that 

change? 

 

Answer 2 

I changed the line "void put() const {cout << "Radius = " << radius;}" to "virtual void 

put() const {cout << "Radius = " << radius;}", then I got the following output. 

 

Output 

Radius = 100 Color = red 

Radius = 50 

 

Question 3 

Does Java allow both virtual and nonvirtual methods? If not, which does it allow? 

Rewrite this program in Java and identify at least four differences between the programs in the 

two languages. 

 

Answer 3 

Circle and ColoredCircle Classes in Java 

// Circle.java 

public class Circle // Super class 

{ 

 private double radius; // A member variable of super class 

 Circle(double radius) // Constructor of super class 

 { 

  this.radius = radius; 



HOMEWORK 6 

 } 

 public void put() 

 { 

  System.out.print("Radius = " + radius + " "); 

 } 

 public static void main(String[] args) // Main method 

 { 

  // Instantiates a super class object 

  Circle circle1 = new ColeredCircle(100., "red"); 

  circle1.put(); 

  System.out.println(); 

  // Instantiates a sub class object 

  Circle circle2 = new Circle(50.); 

  circle2.put(); 

  System.out.println(); 

 } 

} 

 

// ColeredCircle.java 

public class ColeredCircle extends Circle // Sub class 

{ 

 private String color; 

 ColeredCircle(double radius, String color) // Constructor of sub class 

 { 

  super(radius); 

  this.color = color; 

 } 



HOMEWORK 6 

 @Override 

 public final void put() // Overrided put() method 

 { 

  super.put(); 

  System.out.print("Color = " + color); 

 } 

} 

 

Output 

Radius = 100.0 Color = red 

Radius = 50.0 

 

I identified four differences on inheritance and method overriding between C++ and Java 

as follows. 

 C++ Java 

Overriding You need to add virtual operator to 

functions expressly. 

Basically, methods are virtual by 

default except for methods with final 

modifier. If multiple methods with the 

same name in a superclass and a 

subclass exist, the method in subclass 

is automatically overridden. 

Modifiers If you add const modifier to an 

overriding method in a superclass, you 

can compile the program by adding 

const to overridden method in a 

subclass. 

If you add final modifier to overriding 

method, you cannot override the 

method in a subclass. 

Reference to 

Superclass 

To reference to a superclass in a 

subclass, you use scope resolution 

operator. 

To reference to a superclass in a 

subclass, you just use keyword super. 



HOMEWORK 6 

Calling Overridden 

Functions/Methods 

You can call overridden class member 

functions through pointer variables. 

You can call overridden class member 

methods through objects of the class. 

 

Question 4 

This program contains an example of object slicing. On what line does it occur? Why 

must it happen? 

 

Answer 4 

Object slicing is occurred in the line of "circle1 = redCircle;" in the main method as 

illustrated in Figure 1 and Figure 2 below. It happens when you assign an object value of 

subclass to a superclass object. 

 

Figure 1 

 

Figure 2 

 

 

Question 5 



HOMEWORK 6 

Explain why this never happens in Java. Do some investigating and determine how C# 

avoids this problem. 

 

Answer 5 

Object slicing doesn’t happen in Java because all object variables are references. When 

you assign a subclass instance to a superclass variable, you just copy the reference. 

 

In C#, using pointers are allowed only in classes or methods with unsafe context. 

Therefore, programmers can avoid problems due to object slicing unconsciously. 

 


